

Lymphatic filariasis in 2016 in American Samoa: using non-spatial and three spatial analytical methods

Kinley Wangdi, Meru Sheel, Saipale Fuimaono, Patricia M Graves, Colleen L Lau

Outline

- Introduction
- Methods
- Findings and Discussion
- Conclusions

Background

- Lymphatic filariasis (LF): 120 million people infected in tropical and subtropical areas globally
- Wuchereria bancrofti, Brugia malayi and B. timori
- Damages lymphatic system
- Lymphoedema, elephantiasis and scrotal hydrocoele

Background: LF in American Samoa

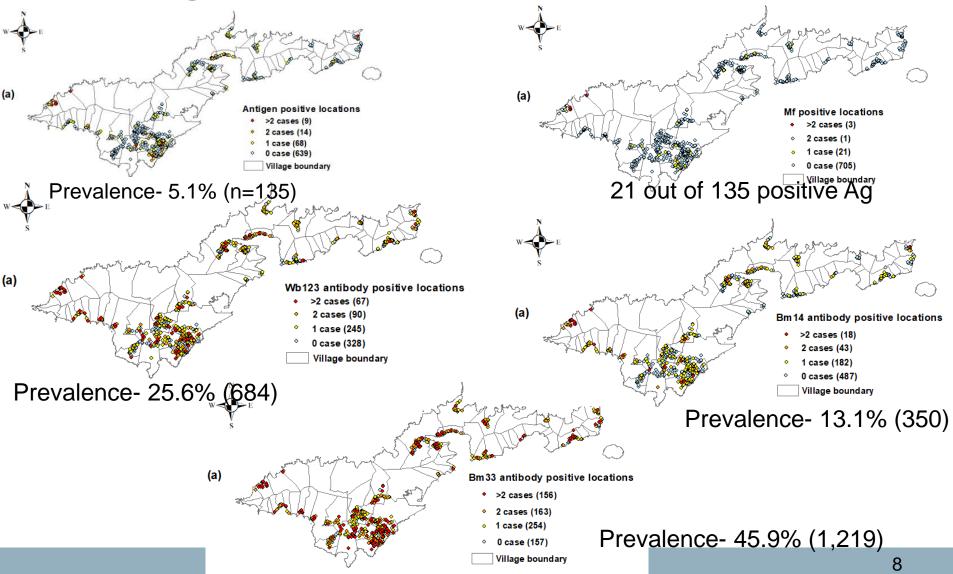
- WHO- Global Programme to Eliminate Lymphatic Filariasis
- Pacific Programme to Eliminate LF (PacELF)-1999
- American Samoa: 7 MDA (2000-2006)
- Passed transmission assessment surveys (TAS)- 2011-2012 and 2015

Background: LF in American Samoa (cont.)

- Detected residual hotspots and ongoing transmission- 2010, 2014 and 2016
- In 2016- A Community-based cluster Survey' was conducted along with TAS Strengthening Survey
- Five different tests were used during this study- antigen (A), microfilaraemia (Mf), and antibodies (Ab [Wb123, Bm14, Bm33])

Aim

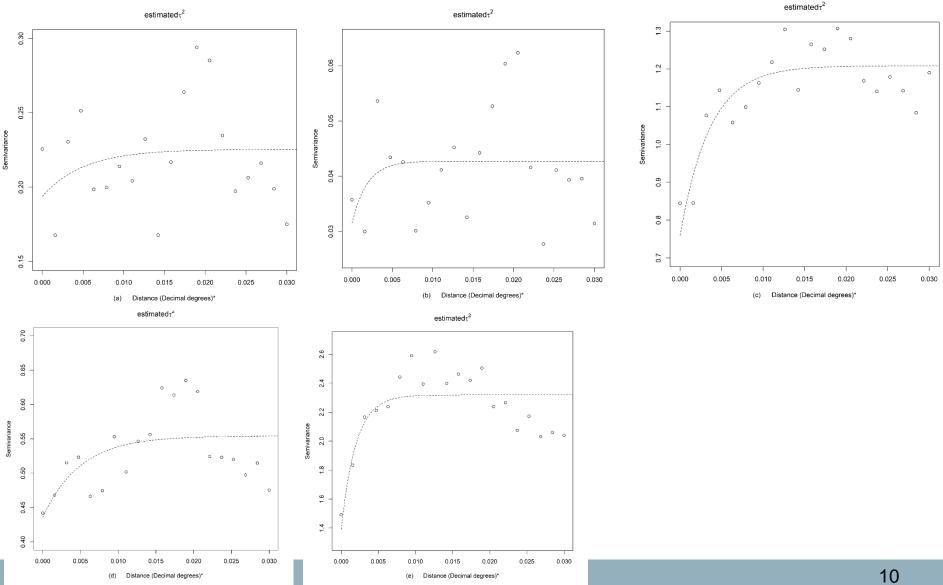
 To identify clustering and hotspots of LF Ag, microfilariae (Mf), and antibodies (Ab) using both non-spatial and spatial analytical methods, and compare the results between different methods.



Methods

- Non-spatial: Intra-cluster correlation
- Spatial:
 - Global: Semivariograms
 - Local:
 - Clusters- SaTScan (Kulldorff's scan statistic)
 - Hotspots- Getis-Ord Gi* statistics

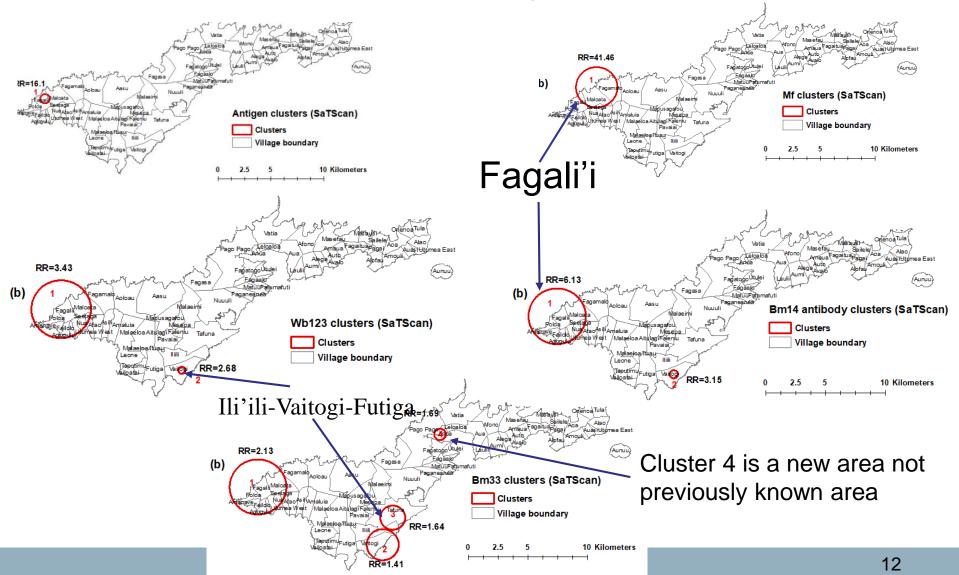
Findings and discussion: Descriptive



Intra-cluster correlation coefficients with 95% confidence interval

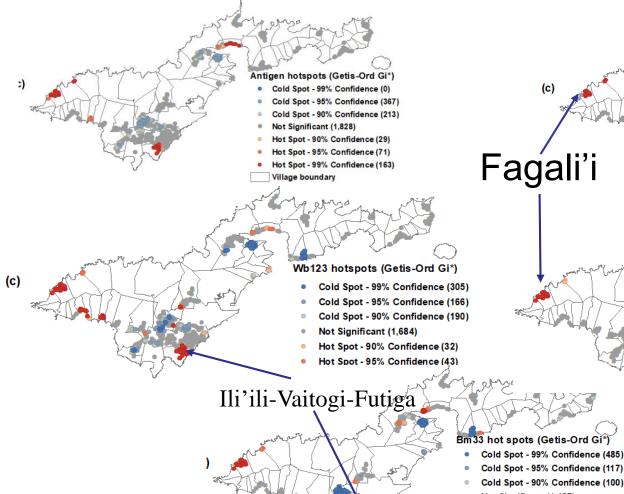
Tests	Household	Village
Antigen	0.59 (0.45-0.71)	0.17 (0.08-0.33)
Microfilaria	0.69 (0.45-0.86)	0.30 (0.10-0.61)
Wb123 Ab	0.27 (0.20-0.36)	0.11 (0.06-0.21)
Bm14 Ab	0.33 (0.23-0.44)	0.17 (0.09-0.29)
Bm33 Ab	0.20 (0.14-0.28)	0.10 (0.05-0.19)

Semivariogram



Parameters of spatial autocorrelation

Spatial parameters	Ag	MF	Wb123	Bm14	Bm33 Ab
			Ab	Ab	
Partial sill	0.03	0.01	0.45	0.12	0.93
Range (degrees)*	0.0051	0.0019	0.0036	0.0049	0.0020
Range (meters)*	562	207	397	548	220
Nugget	0.19	0.03	0.76	0.44	1.39
Percentage of	14	26	37	21	40
variance due to					
spatial					
dependence (%)					

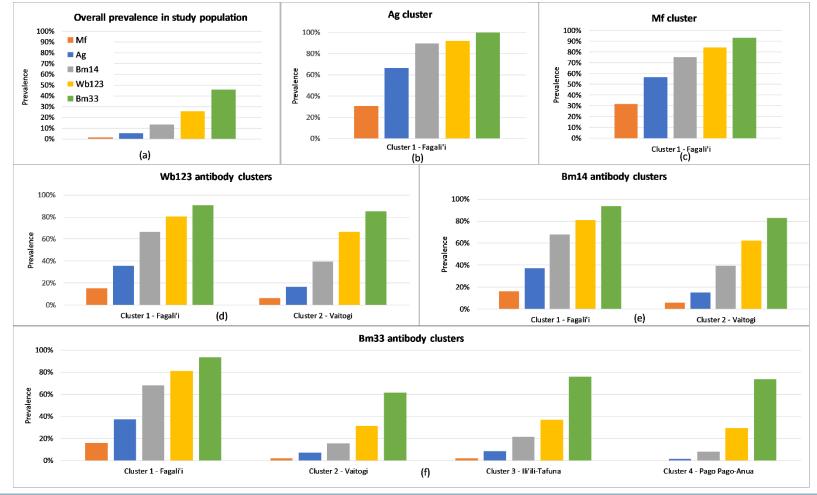


SaTScan: Cluster analysis

Hotspot analysis

- Not Significant (1,457)
- Hot Spot 90% Confidence (97)
- Hot Spot 95% Confidence (125)
- Hot Spot 99% Confidence (290)
- Village boundary

Mf hotspots (Getis-Ord Gi*)


- Cold Spot 99% Confidence (0)
- Cold Spot 95% Confidence (0)
- Cold Spot 90% Confidence (177)
- Not Significant (2,291)
- Hot Spot 90% Confidence (6)
- Hot Spot 95% Confidence (36)
- Hot Spot 99% Confidence (140)
- Hard a

Bm14 hotspots (Getis-Ord Gi*)

- Cold Spot 99% Confidence (0)
 Cold Spot 95% Confidence (0)
- Cold Spot 90% Confidence (4)
- Cold Spot 50% Confidence
- Not Significant (2,447)
- Hot Spot 90% Confidence (59)
- Hot Spot 95% Confidence (17)
- Hot Spot 99% Confidence (144)
 Village boundary

Prevalence of infection markers within SaTScan clusters

Conclusions

- Risk maps could be used by LF programmes for prioritising or intensifying LF elimination efforts in the high-risk areas:
 - Health promotion to maximise MDA coverage,
 - Vector control
 - Targeted testing and/or treating in communities and schools
 - Intensify surveillance.

Conclusions

- Kulldorff's scan statistics results
 - may be useful for providing signals of transmission
- Getis-Ord Gi* statistics appeared the most sensitive of the spatial methods explored in this study & yielded the most detailed output in terms of spatial resolution and risk stratification.

Conclusion

- The choice of methods will depend on the purpose of the analysis, and using a combination of methods (as we have done in this study) should also be considered
- Spatial heterogeneity were driven by: climatic and ecological factors, human behaviour, mosquito distribution and density, previous MDA coverage, or a combination of these factors

Conclusion

- Mf positivity represents active infection and infectiousness
- Ag positivity indicates the presence of adult worms and is a marker of active or recent infection
- Ab provide high probability evidence of current or past infection with LF

Thank you